Centre No.					Pap	er Refe	rence			Surname	IIIII	a1(3)
Candidate No.			4	4	3	7	/	5	H	Signature	•	
		r Reference(s) 437/5H	- -							Ex	aminer's us	se only
						•	4 (•	-			
	L	lond	on 1	$\mathbf{L}\mathbf{X}$	an	nın	at	lor	1S .	IGCSE Team	ı Leader's ı	use onl
	S	cienc	e (D	ou	ble	Av	var	d)				
	C	hemi	stry								Question	
	_	aper 5									Number	Blank
		•									1	
	F	Higl	1ei	r	Γi	er	•				2	
		londay						٨	\ ftai	rnoon	3	
		2						- F	ATIC	1110011		
	11	ime: 1]	nour	30 1	mın	utes					4	
	Ma	iterials requ	ired for	ovomi	nation	T4	ome in	aluda	d with	question papers	5	
	Nil		ireu ioi	CXAIIII	nation	N		Cluded	u witii	question papers	6	
											7	
											8	
T	. 6 111	. ,									9	
Instructions In the boxes al			number	cand	idate 1	numbe	r. vou	r surn	ame. i	nitial(s) and		
signature.	•	•								.,		
Answer ALL t	he question	s. Write yo	ur answ	ers in	the sp					rect question paper. estion paper.		
Show all stage Calculators ma		culations as	nd state	the un	its.							
Information The total more			'ha marl	ra for	in divri	dual a	voatio	na one	1 tha n	arts of quartiens are		
shown in roun	d brackets:	e.g. (2) .		KS 101	marvi	uuai q	uestio	ns and	i ine p	arts of questions are		
There are 9 qu There are 24 p				ıv blaı	nk nas	es are	indic	ated				
A Periodic Tab			T 11	, 214	P.45	,						
Advice to Ca	ındidates											
Write your ans		and in goo	d Englis	zh								

Printer's Log. No. M32417A
W850/U4437/57570 5/7/5/4/2/1

Turn over

Total

	0	Helium 2	Neon 10 Argon	Krypton 36 36 Xenon Xenon 54	Radon 86	
	7		Fluorine 9 35.5 Chlorine	80 Bromine 35 35 127 127 53	Asiatine 85	
	9		Ocygen 8 8 Sulphur	Selenium 34 Tellurium 52 Selenium 52 Selenium 54 Selenium 55 Selenium 56 Selen	Polonium 84	
	S		Nitrogen 7 31 Phosphorus	Arsenic 33 122 Sb Antimony 51	209 Bismuth 83	
	4		Carbon 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Germanium 32 Sn Tin 50		
	က			Gallium Gallium 115 115 115 149		
				65 Zn Zinc 30 30 112 Cd Cadmium 48	1	
TABLE				63.5 Cu Copper 29 108 Ag A7 47		
THE PERIODIC TABLE						
PERIC				S9 CObait 27 103 Hodium Pai	1	
里						
	<u>a</u>			Fe Fe Iron 26 101 101 Hutherium Rutherium 844 44	190 OS	Key Relative atomic mass Symbol Name Atomic number
	Group	Hydrogen		52 55 Cr Mn Chromium Manganese 24 25 96 99 Mo Molybdenum Technetium	Rhenium 75	Relative m. Sy Sy Atomic
				Chromium M 24 24 96 Molyodenum T. 4.2	184 W Tungsten 74	
				Vanadium 23 23 93 Niobium 41	Tantalum 73	
				48 Titanium 22 91 Zirconium 40	Hamium 72	
				Scandium 21	La anthanum 57 227 AC Actinium 89	
	7		9 BBe Beryllium 4 24 Mg Magnesium	Calcium 20 88 Strontium 340 St	Barum L S6 226 Padium R 88	
	-		Lithium 3 3 23 Sodium N			
		Period 1	α κ	4 rv	9 1	

SECTION A

1. Oxygen gas can be prepared and collected in the laboratory using the apparatus shown in the diagram.

(a) Hydrogen peroxide decomposes very slowly to form water and oxygen.

word equation for this reaction.	(i)	
(1)		
tion is much faster if a small amount of manganese(IV) oxide is added. be of substance is manganese(IV) oxide in this reaction?	(ii)	
(1)		
shows oxygen gas being collected in a syringe. other way to collect the gas.	*	(b)
	••••	
(1)		
test for oxygen.) Des	(c)
(1)		

	(1)
(ii)	The diagrams show the electronic configurations of an atom of lithium and an atom of oxygen.
	Li O
	Describe what happens, in terms of electrons, when lithium reacts with oxygen.
	(3)
(iii)	Write the formula of each of the ions in lithium oxide.
	Lithium ion
	Oxide ion(2)
	(Total 10 marks)

5

Turn over

2. A few drops of liquid bromine and a few crystals of solid iodine are placed in the bottom of separate gas jars and the open ends covered with lids. The jars are left for some time under the same conditions.

The diagrams show the jars just after the bromine and iodine are added, and after some time.

(a) State the colour of

liquid bromine	 	 	

(b) The diagrams show that the particles of bromine and iodine spread out in the jars.

(i)	What is the name of this process?	
		(1)

(ii) The iodine changes into a gas before this process occurs. The chemical equation for this change is

$$I_2(s) \rightarrow I_2(g)$$

The change involving bromine is called evaporation. Write a chemical equation, including state symbols, for this change.

......

(2)

Movement		(iii)	Describe how the movement and spacing of the particles in $I_2(g)$ is different that in $I_2(g)$	from
Spacing			that in $I_2(s)$.	
(c) The gases chlorine and hydrogen react together to form hydrogen chloride gas. Hydrogen chloride gas dissolves in water to form hydrochloric acid. Bromine reacts in a similar way to chlorine. (i) Write a word equation for the reaction between bromine and hydrogen. (1) (ii) Suggest the name of the acid formed when the product in (c)(i) dissolves in water.			Movement	
Hydrogen chloride gas dissolves in water to form hydrochloric acid. Bromine reacts in a similar way to chlorine. (i) Write a word equation for the reaction between bromine and hydrogen. (1) (ii) Suggest the name of the acid formed when the product in (c)(i) dissolves in water. (1)			Spacing	
(i) Write a word equation for the reaction between bromine and hydrogen. (1) (ii) Suggest the name of the acid formed when the product in (c)(i) dissolves in water. (1)	(c)			
(ii) Suggest the name of the acid formed when the product in (c)(i) dissolves in water. (1)		Bro	mine reacts in a similar way to chlorine.	
(ii) Suggest the name of the acid formed when the product in (c)(i) dissolves in water. (1)		(i)		
(ii) Suggest the name of the acid formed when the product in (c)(i) dissolves in water. (1)				
(1)		(ii)		
(10tal 9 marks)			/T-4-10	

	Potassium hydroxide solution reacts with dilute nitric acid to form the salt pot nitrate.	tassium
	(i) State the type of reaction that occurs.	
		(1)
	(ii) Write a chemical equation for the reaction.	
		(2)
(b)	A titration is carried out to find the volume of dilute nitric acid that must be ac 25.0 cm ³ of potassium hydroxide solution for complete reaction.	dded to
	(i) Which piece of apparatus is used to add the dilute nitric acid?	
		(1)
	(ii) Before the acid is added, a few drops of phenolphthalein are mixed w potassium hydroxide solution. State the colour change of the phenolphth the end point of the titration.	
		(2)
(c)	35.00 cm ³ of dilute nitric acid reacted completely with 25.0 cm ³ of pot hydroxide solution. Use this information to describe how you could obtain p	
	crystals of potassium nitrate, starting from the solutions of nitric acid and pot hydroxide.	tassium
	crystals of potassium nitrate, starting from the solutions of nitric acid and pot	
	crystals of potassium nitrate, starting from the solutions of nitric acid and pot	
	crystals of potassium nitrate, starting from the solutions of nitric acid and pot	
	crystals of potassium nitrate, starting from the solutions of nitric acid and pot	
	crystals of potassium nitrate, starting from the solutions of nitric acid and pot	
	crystals of potassium nitrate, starting from the solutions of nitric acid and pot	
	crystals of potassium nitrate, starting from the solutions of nitric acid and pot	
	crystals of potassium nitrate, starting from the solutions of nitric acid and pot	

9

SECTION B

4. (a) The table shows the electronic configurations of atoms of the elements in Period 3 of the Periodic Table.

Element	Na	Mg	Al	Si	P	S	Cl	Ar
Electronic configuration	2.8.1	2.8.2	2.8.3	2.8.4	2.8.5	2.8.6	2.8.7	2.8.8

(i)	How is the electronic configuration of an atom of an element related to its position in the Periodic Table?
	(1)
(ii)	Give the electronic configuration of an atom of the element directly below magnesium in the Periodic Table.
	(1)
(b) Ex	plain the meaning of the term isotopes .
	(2)

(c) An element exists as three isotopes. The table gives some information about them.

Number of neutrons	Number of protons	Atomic number of isotope	Mass number of isotope	Percentage of each isotope in the element
		12	24	79
13	12	12		
14	12		26	11

(i) Complete the table for the isotopes of the element.

(5)

(ii) Use the information in the table to calculate the relative atomic mass of the element. Give your answer to **three** significant figures.

(3)

Q4

(Total 12 marks)

5. (a) Copper is purified by electrolysis.

Label the diagram of the apparatus used.

(3)

(1)

(b) Aluminium is obtained from aluminium oxide using electrolysis.

(i) Explain why the aluminium oxide is dissolved in molten cryolite.

.....

(ii) Name the element used for both the positive and negative electrodes.

(1)

c) Both copper and aluminium have many uses. Give a different use for each of these metals and give a property of the metal on which that use depends. Use of copper	(c)	
Property on which use depends Use of aluminium Property on which use depends (4) (4) Titanium is a metal that has a similar reactivity to aluminium. Rutile is an ore that contains titanium dioxide, TiO ₂ . Suggest how titanium could be obtained from this ore and explain your answer.		
Use of aluminium Property on which use depends		Use of copper
Property on which use depends		Property on which use depends
(d) Titanium is a metal that has a similar reactivity to aluminium. Rutile is an ore that contains titanium dioxide, TiO ₂ . Suggest how titanium could be obtained from this ore and explain your answer.		Use of aluminium
(d) Titanium is a metal that has a similar reactivity to aluminium. Rutile is an ore that contains titanium dioxide, TiO ₂ . Suggest how titanium could be obtained from this ore and explain your answer.		
contains titanium dioxide, TiO ₂ . Suggest how titanium could be obtained from this ore and explain your answer.		
(2)	(d)	contains titanium dioxide, TiO ₂ .
(2)		
(2)		
(2)		
(2)		
(Total 11 marks)		
		(Total 11 marks)

6. (a)	When hot iron wool is plunged into a gas jar containing dry chlorine gas a rapid reaction occurs. The iron wool glows brightly and a dense smoke of iron(III) chloride is seen.	Lea bla
	What does the fact that the iron wool glows brightly tell you about the reaction?	
	(1)	
(b)	When hot iron wool reacts with dry hydrogen chloride gas, the products are iron(II) chloride and hydrogen. Write the chemical equation for this reaction.	
	(2)	
(c)	Sodium hydroxide reacts with both iron(II) chloride and with iron(III) chloride.	
	Describe how you could use sodium hydroxide solution to distinguish between solid samples of iron(II) chloride and iron(III) chloride. Give brief details of what you would do and what you would observe in each case.	
	(4)	Q6
	(Total 7 marks)	

7. (a) The table shows the displayed formulae of some organic compounds.

Leave	
blank	

(2)

Compound	Displayed formula
A	H H H—C—C—H H H
В	H H H—C—C—O H H H
C	C=C H H
D	H H H H—C—C—C—H H H H
E	C=C H H H H H H H

(i)	Give one reason why compound \mathbf{B} is not a hydrocarbon.	
		 (1)
(ii)	State the empirical formula of compound A .	
		 (1)
(iii)	Both A and D are members of the same homologous series. What is a homologous series?	

	(iv)	What is the name of the addition polymer formed by compound E ?		blank
	(v)	Draw the repeat unit of the addition polymer of compound E .	(1)	
	(vi)	Compound E reacts rapidly with bromine water but the addition polymer compound E does not. Explain this difference in behaviour.		
(b) Dra	w the displayed formulae of three isomers with molecular formula $\mathrm{C_4H_8}$.	(2)	
			(3)	Q7
		(Total 12 marl		

/	(i)	Name the gaseous product in this reaction and explain why it is dangerous to
		humans.
		(3)
	(ii)	Calculate the relative formula mass of calcium carbide.
		(1)
h)	Cal	cium carbide reacts with water to make the gas ethyne, C_2H_2 , and a compound of
		eium.
	(i)	Complete the chemical equation for this reaction.
		$CaC_2 + 2H_2O \rightarrow C_2H_2 + \dots$
		(1)
	(ii)	Ethyne, C ₂ H ₂ , is highly flammable.
		Predict the products of the complete combustion of ethyne.
		(2)
		(Total 7 marks)

9. The diagrams show the structures of diamond and graphite. They are different structural forms of the element carbon.

(a) What type of structure are both diamond and graphite?

(1)

(b) Diamond has a high sublimation temperature. Explain why.

(3)

(c) Graphite can be used as a lubricant. Explain why.

(2)

(d) During the twentieth century another structural form of carbon was discovered. In this structural form the molecules have the formula C_{60} and are shaped like footballs.	Leave blank
(i) C ₆₀ has a much lower sublimation temperature than diamond. Suggest why. (ii) Would you expect C ₆₀ to act as a lubricant? Explain your answer.	
(2) (Total 11 marks) TOTAL FOR SECTION B: 60 MARKS TOTAL FOR PAPER: 90 MARKS END	Q9

